CRISPR Knockout / Knockin kit Validation
CRISPR needs Two Components: Cas9 and guide RNA

- Cas9, the nuclease
- Guide RNA (gRNA) ---
 20bp target specific scaffold---constant, can be built in a vector, gRNA scaffold

Protospacer Adjacent Motif (NGG)
All-in-one CRISPR/Cas9 vector

pCas-Guide

- Target sequence cloning
- Expresses Cas9

CAS9 + sequence specific gRNA targeted double-stranded break

Your Target Sequence

8.0 kb

pCas-Guide

Myc/DDK

Ori

U6 Promoter

AMPr

CMV Promoter
Genome Editing Is Achieved via Repair

CRISPR/Cas9

Unpredicted indels
- mutations
- Insertions/deletions
- Gene knockout

Desired
- Gene knock-out
- Specific mutations/SNP
- Deletion/insertion/tagging genes
- Knock-in (reporter gene)
- Promoter study

NHEJ

HDR

Donor template
CRISPR/Cas9 Tools

- CRISPR/Cas vectors
- Pre-designed donor vectors
- Genome-editing Knockout kit via CRISPR, genome-wide
 - 2 guide RNA vectors
 - 1 GFP-puro donor vector
 (gene specific homologous arms cloned)
 - 1 scramble control
KN210563 Was Used For Validation

ATG5 - human gene knockout kit via CRISPR

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Related Products</th>
<th>Validation Data</th>
<th>FAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKU</td>
<td>Description</td>
<td>Price</td>
<td>Availability</td>
</tr>
<tr>
<td>KN210563</td>
<td>ATG5 - human gene knockout kit via CRISPR</td>
<td>$1200</td>
<td>4 Weeks</td>
</tr>
</tbody>
</table>

Also for ATG5 (Locus ID 9474)

- cDNA Clone
- shRNA/siRNA
- Primer Pair
- Protein Request
- Antibody

Kit Components

- **KN210563G1**, ATG5 gRNA vector 1 in pCas-Guide vector, Target Sequence: AACTTGTTCACGCTATATC
- **KN210563G2**, ATG5 gRNA vector 2 in pCas-Guide vector, Target Sequence: AAGATGTGCTTCGAGATGTG
- **KN210563D**, donor vector containing Left and right homologous arms and GFP-Puro functional cassette. **Homologous arm and GFP-puro sequences**
- **GE100003**, scramble sequence in pCas-Guide vector
Diagram of CRISPR Knockout Kit

1. Target Sequence Cloned In pCas Guide Vector
 - Your Target Sequence
 - pCas-Guide 8.0 kb
 - U6 Promoter, miRNA, Bridge DNA Scaffold, CMV Promoter, Ori, Myc/DDK, CAS9

2. Donor Template DNA Containing Homologous Arms & Functional Cassette
 - eg. LHA, GFP, Loxp, Puro, Loxp, PGK, RHA, pUC

3. Genome Incorporation
 - LHA, Loxp, GFP, Puro, Loxp, RHA, PGK, Homologous Repair
 - Chromosome, ATG, Edited Chromosome

Cotransfection
Edited Chromosome –
gene knockout / GFP-Puro knockin

- Target gene is knocked out
- GFP under endogenous gene promoter
- Puromycin selection marker under PGK promoter
Protocols for targeted gene knockout using CRISPR Knockout / Knockin Kit

1. Cotransfection: one of the gRNA vector + donor vector
 Controls: 1). Scramble control + donor vector
 2). Donor only

2. Dilute cells containing donor vector ~ 20 days before puro selection
 Note: Since puro selection marker is under PGK promotion,
 Episomal and randomly integrated donor vector will also give puro resistance.
Diagram of diluting cells before puro selection

P1, 48 hr post transfection
- 1:10 split
- Grow for 3 days

P2, 5-day post transfection
- 1:10 split
- Grow for 3 days

Optional: Extract genomic DNA for PCR

P3, 8-day post transfection
- 1:10 split
- Grow for 3 days

P4, 11-day post transfection
- 1:10 split
- Grow for 3 days

P5, 14-day post transfection
- 1:10 split
- Grow for 3 days

P6, 17-day post transfection
- 1:10 split
- Grow for 3 days

P7, 20-day post transfection
- 1:10 split

Freeze or keep growing

If puro selection is needed again
Protocols for targeted gene knockout using CRISPR Knockout / Knockin Kit

1. **Cotransfection: gRNA vector + donor vector.**
 - Controls: 1). Scramble control + donor vector
 - 2). Donor only

2. Dilute cells containing episomal donor vector ~ 20 days post transfection

 Note: Since puro selection marker under PGK promotion, Episomal and randomly integrated donor vector will also give puro resistance.

3. Apply Puro selection. Isolate individual cell colonies
 - Note. Doses need to be determined by kill curve for each cell line
 - Donor vector alone can randomly integrate into the genome, but the efficiency should be much lower
Puromycin selection

After 5 splits, HEK293 cells were selected under 1 µg/mL puromycin for 5 days
4. Analyze puro positive cells.

A. WB to detect the knockout effect (better with single colonies)
B. Genomic PCR to verify GFP-puro integration, sequence the PCR products to confirm the integration.

Avoid Donor DNA contamination:
- F primer: upstream of the 5’ end of left arm
- Reverse primer: GFP region
Genomic PCR of GFP-puro Integration

Genomic DNA was extracted from cells 5 days post transfection before puro selection.
Sequencing Using The Forward Primer

Correct integration at 5’ end of left arm

WT Genomic sequence

Edited genome

Donor sequence
Correct Integration of GFP-puro Cassette

GFP replaced ATG5

WT Genomic sequence
Donor sequence
Edited genome

ATG5 ORF
GFP
Other Donor Vectors with different FP or Luciferase
Please visit us

www.origene.com

techsupport@origene.com